margulis_steven

Steven Margulis
Department Chair

5732 Boelter Hall
margulis@seas.ucla.edu

Welcome to the Department of Civil and Environmental Engineering

The Civil and Environmental Engineering Department consists of five sub-disciplines, each of which investigates distinct areas of inquiry to one degree or another.

  • Civil Engineering Materials: Ongoing research is focused on inorganic, random porous materials and incorporates expertise at the interface of chemistry and materials science to develop the next generation of sustainable construction materials. The work incorporates aspects of first principles and continuum scale simulations and integrated experiments, ranging from nano-to-macro scales. Special efforts are devoted toward developing low-clinker factor cements and concretes, reducing the carbon footprint of construction materials, and increasing the service life of civil engineering infrastructure.
  • Environmental Engineering: Research in environmental engineering focuses on the understanding and management of physical, chemical, and biological processes in the environment and in engineering systems. Areas of research include process development for water and wastewater treatment systems and the investigation of the fate and transport of contam-inants in the environment.
  • Geotechnical Engineering: Research in geotechnical engineering focuses on understanding and advancing the state of knowledge on the effects that soils and soil deposits have on the performance, stability, and safety of civil engineering structures. Areas of research include laboratory investigations of soil behavior under static and dynamic loads, constitutive modeling of soil behavior, behavior of structural foundations under static and dynamic loads, soil improvement techniques, response of soil deposits and earth structures to earthquake loads, and the investi-gation of geotechnical aspects of environmental engineering.
  • Hydrology and Water Resources Engineering: Ongoing research in hydrology and water resources deals with surface and ground-water processes, hydrometeorology and hydroclimatology, watershed response to disturbance, remote sensing, data assimilation, hydrologic modeling and parameter estimation, multiobjective resources planning and management, numerical modeling of solute transport in groundwater, and optimization of conjunctive use of surface water and groundwater.
  • Structures (Structural Mechanics and Earthquake Engineering): Research in structural mechanics is directed toward improving the ability of engineers to understand and interpret structural behavior through experiments and computer analyses. Areas of special interest include computer analysis using finite-element techniques, computational mechanics, structural dynamics, nonlinear behavior, plasticity, micromechanics of composites, damage and fracture mechanics, structural optimization, probabilistic static and dynamic analysis of structures, and experimental stress analysis. Designing structural systems capable of surviving major earthquakes is the goal of experimental studies on the strength of full-scale reinforced concrete structures, computer analysis of soils/structural systems, design of earthquake resistant masonry, and design of seismic-resistant buildings and bridges. Teaching and research areas in structural/earthquake engineering involve assessing the performance of new and existing structures subjected to earthquake ground motions. Specific interests include assessing the behavior of reinforced concrete buildings and bridges, as well as structural steel, masonry, and timber structures. Integration of analytical studies with laboratory and field experiments is emphasized to assist in the development of robust analysis and design tools, as well as design recommendations. Reliability-based design and performance assessment methodologies are also an important field of study.

What do Civil and Environmental Engineers do?

Civil and Environmental Engineers make sure that you have clean water to drink, clean air to breath, safe buildings to live and work in, roads to drive on, trains and buses to ride in, and we even treat sewage and waste water. We construct and maintain buildings, roads, railroads, dams, waterways, waste treatment plants, landfills and other structures and systems. Furthermore, we focus on accomplishing these essential features of society using a minimum amount of energy, and by making the smallest possible environmental impact. We ensure that the built environment functions properly following disasters such as earthquakes, floods, hurricanes, and terror attacks. Civil and Environmental Engineers bear tremendous responsibility and are essential for the proper functioning of society.

 


Guiding Vision of our Department: “Engineering Sustainable Infrastructure for the Future”

The Department of Civil and Environmental Engineering Strives To:

  • Educate engineering leaders who can work in a multi-disciplinary environment to anticipate and address evolving challenges.
  • Develop and apply high performance structural materials and systems.
  • Develop performance‐based earthquake engineering as a new paradigm for analysis and design of disaster‐resistant infrastructure.
  • Improve the reliability, performance, and disaster-resistance of water supplies, treatment processes, and distribution systems.
  • Create new engineering materials to improve the performance of infrastructure.
  • Characterize and mitigate natural and man-made hazards.
  • Improve fundamental knowledge of the inter-relations between the built environment and natural systems.
  • Develop the technological innovations needed to safeguard, improve, and economize infrastructure and society.

Program Education Objectives (PEO)

Aligning with the department mission of “Engineering Sustainable Infrastructure for the Future,” UCLA Civil and Environmental Engineering graduates are expected to:

1. Pursue careers in private practice or in the public sector and advance to leadership positions in fields that utilize the technical skills and diverse knowledge provided by their UCLA education.

2. Use their solid technical foundation and critical thinking skills to achieve success in graduate education and research, should they opt to pursue a postgraduate degree.

3. Solve problems that address the interrelationships between built environment, natural systems and human agency in global, societal, environmental and sustainability contexts.

4. Exhibit effective communication, teamwork, and practical engineering skills to practice ethically and responsibly.

Student Outcomes

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.

2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.

3. An ability to communicate effectively with a range of audiences.

4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.

5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.

6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Accreditation Statement

The Civil Engineering undergraduate degree program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the General Criteria and the Program Criteria for Civil and Similarly Named Engineering Programs.